The Method of Linear Determining Equations to Evolution System and Application for Reaction-Diffusion System with Power Diffusivities

نویسنده

  • Lina Ji
چکیده

Abstract: The method of linear determining equations is constructed to study conditional Lie–Bäcklund symmetry and the differential constraint of a two-component second-order evolution system, which generalize the determining equations used in the search for classical Lie symmetry. As an application of the approach, the two-component reaction-diffusion system with power diffusivities is considered. The conditional Lie–Bäcklund symmetries and differential constraints admitted by the reaction-diffusion system are identified. Consequently, the reductions of the resulting system are established due to the compatibility of the corresponding invariant surface conditions and the original system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Modified Wavelet Method for Solving Two-dimensional Coupled System of Evolution Equations

As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numer...

متن کامل

Chemical Reaction Effects on Bio-Convection Nanofluid flow between two Parallel Plates in Rotating System with Variable Viscosity: A Numerical Study

In the present work, a mathematical model is developed and analyzed to study the influence of nanoparticle concentration through Brownian motion and thermophoresis diffusion. The governing system of PDEs is transformed into a coupled non-linear ODEs by using suitable variables. The converted equations are then solved by using robust shooting method with the help of MATLAB (bvp4c). The impacts o...

متن کامل

Coupled Integral Equations Approach in the Solution of Luikov Equations with Microwave Effect

The objective of this study is to present a mathematical modeling and solution approach for the drying process of spheroidal solids with the application of microwave in capillary porous media based on the Luikov equations, composed of a system of linear and coupled partial differential equations arising from the energy, mass and pressure balances inside the solid matrix. Additionally, the power...

متن کامل

The Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint

In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Symmetry

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016